
JOURNAL OF COMPUTATIONAL PHYSICS 5, 350-354 (1970) 

The Numerical Solution of Schriidinger’s Equation 
with a Nonlocal Potential* 

In a recent paper [l], we suggested a new method for the numerical solution of 
Schriidinger’s equation, based on the following approximation for two non- 
commuting operators H,, and H1 , 

e-BbYo+Hl) = e-112BHl e-BHO e-'/2BHl 
+ we. (1) 

Moreover, the error in making this replacement can be found from the evaluation 
of the expectation value of the next term, viz., 

&jF e-l’asH1 e-l’aeHo(#[Hl , (Hl , Ho)] + [Ho , (Hl , Ho)]} e-l’aBHo e-l’*H1. 

We would like to point out that this method also provides for a simple numerical 
solution of Schriidinger’s equation with a nonlocal potential. 

For such a case, we consider the equation 

- & y(x, Is) + f dx’ V(x, x’) Y(x’, ,8) = - $ (x, Is), (2) 

where V(x, x’) is a nonlocal potential, and /3 is a real parameter. To solve this 
equation, we use the same approach as [l], repeating the basic steps here, in a 
slightly modified form, to make this note self-contained. By separating Eq. (2) 
into spherical polar coordinates (r, 8, +), and expanding in spherical harmonics, 
we may rewrite this as 

[ 
a2 = -- 
at-2 + ‘(’ : ‘) ] 9dr, KO + 1: udr, r? M’, /O dr’, (3) 

where bdr, 8) = Mr, B> ( i.e., &(O, p) = 0) and q(r, r’) is defined via 

V(x, x’) = i w u&(r, r’) P,(cos a), 
7r 

*Supported by the Australian Research Grants Committee. 

350 



NONLOCAL SCHRtlDINGER’S EQUATION 351 

where cos OL = cos 0 cos 8’ + sin 8 sin 8’ cos(# - 9’). The solution of this equa- 
tion can be written formally as 

4*(r, p) = e-B(G+HJ &(r, 0) (4) 

and, hence, using Eq. (l), 

rjl(r, /I) = e-l’esH1 e”Ho e-“BBH1+,(r, 0) + O@“) (5) 

gives the solution for sufficiently small j?. Writing p&, 6, p) and G,(r, I’, ,5?) for the 
configuration space representation of the operators exp(--/I&) and exp(-@HI), 
this equation becomes 

$I@, 19 = 1: d’ [r drl [I dr, WY rl , I3 drl , r2 , PI W2 , r’, PI +dr’, 0). (6) 

Extracting the explicit fi dependence, it is easily seen that the eigenvalues (En) 
and eigenfunctions [h(r)] of the Schradinger equation corresponding to Eq. (3) 
satisfy the integral equation, 

e-6EmMr) = jr dr’ ,,” 4 1ydr2 W, rl , IO & , r2 , PJ Gdr2 , r’, P) qL(r’>. (7) 

For the appropriate boundary conditions, it is easy to find an expression for 
pl(r, r’, fi) in closed form, 

where i, is the modified spherical Bessel function. The function Gl(r, r’, p) can be 
written as an expansion in powers of j?, thus, 

G,(r, r ‘, /I) = S(r - r ‘) - k BW, r’) + f 8” ,,” M, r7 W, r’> dr” + o(P). (9) 

Under these circumstances, Eq. (7) becomes a homogeneous integral equation 
with symmetric kernel, whose eigenvalues and eigenfunctions can be found by 
standard numerical techniques. 

By cutting off the integrals in Eq. (7) at some finite point (R), and calculating 
them by quadratures, the problem becomes one of finding the eigenvalues and 
eigenvectors of the matrix equation, 
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where 

and 

Qa = AGdri 9 rj’, P), Pij = APdri , rf’, A 

4i = b(ri), 

ri = id, i = I,..., N, A = R/N, 

with the proviso that /I and A be small and Ae/4/3 < 1. There is no essential 
difficulty associated with the 6 function appearing in Eq. (9), since it always appears 
as an integrand. In our finite difference representation, this term contributes a 
factor 1 to the diagonal elements and zero to the off-diagonal elements of the matrix 
Qii - 

As an example, we have considered a potential with a Gaussian nonlocality, 

V(X, X’) = Z/u(r) u(r’) + e-(x-x’)*l~. 

In this case, we have 
I  

ul(r, r’) = m) &+- cf+r9/P * 2rr’ 
11 ( ) 7’ Y 

(12) 

We have performed the calculations for the eigenvalues of the lS,,s , 2S,,, and 
lP,,, levels in a shell model potential appropriate to the Cd’ nucleus [2]. For this 
case, we have a Wood-Saxon potential as the central part, u(r), of our nonlocal 
potential, 

VO 
U(r) = - [l + efr-R)/a] 9 R = r&s, 

with the parameters, V, = 90 MeV, r,, = 1.04 F, 01 = 0.65 F. The calculations 
also included a local spin-orbit coupling contribution 

with V, = 24.65 MeV, and a local Coulomb potential due to a uniform sphere of 
equal charge to that of the nucleus. The results of these calculations, for various 
values of the nonlocality parameter y, are shown in Fig. 1. This method has the 
advantage of being fast (10 set for a 60 point grid for each value of y on a CDC 
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6400) and stable and avoids the approximations introduced by either the effective 
mass approximation [2] or the local energy approximation ([3], [4j). 

NON-LOCALITY PARAMETER (FDWIIS) 

FIG. 1. Shell model calculations for the energy values of the 1SI,r, 2&l,, lP,lr levels of the 
Cd* nucleus as a function of the nonlocality parameter y. 

R = 12.0 F, N = 60, ,3 = 0.003. 

Finally, we should like to point out that, at least in principle, there is no real 
problem connected with the introduction of spin. The spin-orbit coupling poten- 
tial, Eq. (13), does not couple the various spin states, and we have simply different 
potentials occuring for the two spin directions. In the most difficult situation, with 
tensor forces, there will be a mixing of different states, so that Eq. (7) must be 
replaced by a set of coupled integral equations. The numerical solution of this set 
will still be possible by a difference scheme leading to a system of equations ana- 
logous to Eq. (10). Of course, the dimension of the matrix Aij (which is determined 
by the degree of intermixing of the various states) will eventually determine the 
feasibility of carrying out any numerical calculations. 
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